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Abstract. Basic problems of the semiclassical microscopic modelling of strongly interacting systems are
discussed within the framework of Quantum Molecular Dynamics (QMD). This model allows to study
the influence of several types of nucleonic interactions on a large variety of observables and phenomena
occurring in heavy ion collisions at relativistic energies. It is shown that the same predictions can be
obtained with several – numerically completely different and independently written – programs as far as
the same model parameters are employed and the same basic approximations are made. Many observables
are robust against variations of the details of the model assumptions used. Some of the physical results,
however, depend also on rather technical parameters like the preparation of the initial configuration in
phase space. This crucial problem is connected with the description of the ground state of single nuclei,
which differs among the various approaches. An outlook to an improved molecular dynamics scheme for
heavy ion collisions is given.

PACS. 25.75-q Relativistic heavy-ion collisions

I Introduction

One of the main interests of the study of relativistic heavy
ion collisions is the investigation of the properties of nu-
clear matter at extreme densities and excitation energies.
[1–8]. These investigations include the production of sec-
ondary particles, the properties of particles in a (dense)
nuclear medium, the compression and repulsion of dense
nuclear matter, its equilibration during the reaction and
its decay into fragments and single particles. On a macro-
scopic level the total energy of a dense nuclear system and
its decomposition into thermal and compressional parts is
related to the concept of the nuclear equation of state.
Since a consistent derivation of the nuclear equation of
state, e.g. the energy per nucleon as a function of den-
sity and temperature, is only possible in the low density
limit (Brückner theory) a reliable theoretical description
is not at hand. On the other hand this quantity is of inter-
est for many astrophysical questions [14] and therefore its
knowledge is highly desirable. Heavy ion reactions in com-
bination with corresponding simulations using a variety of
parametrizations of the equation of state are presently the
only possible approach to study this quantity.

Heavy ion collisions allow to search for a large num-
ber of observables which may be used as indicators of the
properties of matter under extreme conditions. Frequently
these observables are related to the quantitative descrip-

tion of collective effects like the bounce–off of cold specta-
tor matter in the reaction plane [9] and the squeeze–out
of hot and compressed participant matter perpendicular
to the reaction plane [10] as well as to the production of
secondary particles [11–13].

Experiments performed at LBL in the early 80’s
(Streamer chamber, Plastic ball) yield first 4π informa-
tion of the final momentum distributions in heavy ion
reactions [15,16]. New experimental 4π setups at LBL,
Ganil, GSI and Brookhaven enable precise measurements
on the emission of primary and secondary particles and
therefore provide a stimulating challenge to the theoreti-
cal description of heavy ion collisions.

Lots of comparisons have been made between experi-
mental data and microscopic and macroscopic transport-
theoretical calculations. Besides other microscopic mod-
els like VUU [17], BUU [18,19], Landau-Vlasov [20],
AMD [22] or FMD [21] the Quantum Molecular Dynam-
ics approach (QMD) is a frequently used model [23]. How-
ever, from recent comparisons of experimental results with
QMD using different numerical realizations conflicting re-
sults have been reported [24]. We will demonstrate that
these discrepancies are on the one hand due to the vari-
ation of physical parameters (like ground state densities,
interaction ranges) whose precise values are not known.
On the other hand they are a consequence of the impossi-
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bility to build a ground state nucleus with all its detailed
structure in a semiclassical molecular approach.

This paper is organized as follows: First the basic prin-
ciples of a microscopic modelling of heavy ion reactions are
briefly reported. The assumptions entering in the different
QMD realizations are described in detail. The origin of dif-
ferences is critically examined in this context. We demon-
strate that most of the discrepancies can be attributed
to different descriptions of the initial nuclei, which limits
the applicability of some versions. Finally an outlook to
a new molecular dynamics scheme for heavy ion collisions
simulations is given.

II Microscopic modelling of heavy ion
reactions

Presently the microscopic models can be subdivided into
two classes: Those which follow the time evolution of the
one-body phase space distribution and those which are
based on n-body molecular dynamics or cascade schemes.

A VUU-type models

The microscopic transport models for the one-body Wigner
phase space density distribution obtained different names
although they solve the same equation. They differ in the
technical realization, i.e. the computer program, and are
known as Vlasov–Uehling–Uhlenbeck (VUU) model [17,
27] (or BUU [18,19], LV [20] ). They solve the follow-
ing transport equation for the one-body Wigner density
f(r,p, t) in the limit h̄→ 0:

∂f

∂t
+ v · ∇rf −∇rU · ∇pf = −4π3(h̄c)4

h̄(mc2)2

×
∫

d3p′1
(2πh̄)3

d3p′2
(2πh̄)3

d3p2
dσ
dΩ

× [ff2(1− f ′1)(1− f ′2)− f ′1f ′2(1− f)(1− f2)]
× δ4(p+ p2 − p′1 − p′2). (1)

The l.h.s. of this equation is the total differential of f
with respect to the time assuming a momentum indepen-
dent potential U . This potential is calculated selfconsis-
tently and corresponds to the real part of the Brückner
G-matrix. Usually a Skyrme-parametrization

U = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ
(2)

of the real part of the G-matrix is employed, where ρ is
the nuclear density which is frequently measured in units
of the saturation density ρ0 of cold nuclear matter.

The r.h.s. of (1) contains a Boltzmann collision inte-
gral, which is identified with the imaginary part of the
G-matrix. This part describes the influence of binary hard-
core collisions, where the term with ff2 describes the
loss of particles (in a phase space region) and the term

with f ′1f
′
2 the gain term due to collisions feeding the con-

sidered phase space region. It is supplemented with the
Nordheim–Uehling–Uhlenbeck modifications in order to
obey the Pauli-principle in the final state of the collisions
[28]. The δ-functions assure the conservation of the four-
momentum. The cross section σ is normally adjusted to
the free nucleon-nucleon scattering. The differences from
cross sections calculated from the imaginary part of the
Brückner G-matrix are minor [51] and influence little the
observables of a heavy ion collision. For a derivation of
this equation see [44,45].

The equation is solved by use of the testparticle method.
Here the continuous one-body distribution function f at
t = 0 is represented by an ensemble of n·(Ap+At) pointlike
particles. This is often viewed as an ensemble of n paral-
lel events with Ap +At physical particles each, where Ap
and At denote the number of nucleons in projectile and
target, respectively. The l.h.s. of (1) can be regarded as
the transport equation (Vlasov-equation) for a distribu-
tion of classical particles whose time evolution is governed
by Hamilton’s equations of motion.

ṗi = −∂〈H〉
∂ri

and ṙi =
∂〈H〉
∂pi

, (3)

The testparticles move due to their own, selfconsistently
generated mean-field. The r.h.s. is taken into account by
additional stochastic scattering similar to the collisions in
cascade models [30,31].

More explicitly the test particle method corresponds
to the replacement of the expectation value of a single
particle observable

〈O(t)〉 =
∫
f(r,p, t)O(r,p) d3r d3p (4)

by a Monte Carlo integration

〈O(t)〉 =
1

n(AT +AP )

n(AT+AP )∑
i=1

O(ri(t),pi(t)) (5)

where the ri(t) and pi(t) are points in phase space which
are distributed according to f(p, r, t), i.e.,

f(p, r, t) = lim
n→∞

1
n(AT +AP )

×
n(AT+AP )∑

i=1

δ(r − ri(t))δ(p− pi(t)) (6)

It is evident that a large number n is necessary to
avoid numerical noise. Predictions beyond the one-body
level are not feasible although several attempts have been
made to relate the (unphysical) numerical noise to physi-
cal fluctuations. In practice the number n lies in the range
between 15 and 500 and one employs a grid to obtain a
smooth phase space density distribution.

The numerical realization can be achieved in various
ways. VUU uses a phase space sphere around each parti-
cle in order to determine f and a coordinate space sphere
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to determine ρ and thus U(ρ). This corresponds to a La-
grangian method. On the contrary, BUU uses a fixed grid
corresponding to an Eulerian method in hydrodynamics.
In both models collisions are treated in a parallel event
method, only testparticles of the same events, i.e. the Ap+
At test particles with the same index n, can collide. The
Landau-Vlasov model determines f by the overlap of sev-
eral Gaussians. The collisions are performed in a crossed-
event (or full ensemble) method where all n(Ap+At) may
collide with each other particle with a scaled cross section.

For a solution of (1) proper boundary conditions have
to be specified. In the case of heavy ion reactions, the
test particles are distributed according to the density- and
(Fermi-) momentum distribution of ground state nuclei.
The latter are then boosted onto every other with the
proper relative momentum. Initially the test particles are
randomly distributed in a coordinate space sphere of the
radius R = 1.12A1/3 fm (where A is the atomic number
of the nucleus) and in a momentum space sphere of the
radius of the corresponding Fermi momentum.

One should keep in mind that the forces acting on the
testparticles are calculated from the entire distribution in-
cluding testparticles from all events, hence the n parallel
events are not independent and event-by-event correla-
tions cannot be analyzed within this one-body transport
models. In the limit n→∞ the distribution of these prop-
agated test particles at the time t represents the one-body
distribution function at this time. Any one-body observ-
able can be calculated by averaging the values weighted
with the distribution function according to (5). Hence,
VUU type models succeeded in the description of one-
body observables like collective flow, stopping and parti-
cle spectra, but, fluctuations and correlations, such as the
formation of fragments or the description of two-particle
correlations in relativistic heavy ion collisions, are beyond
the scope of a transport model based on a one–body dis-
tribution function [25,26]. Any fluctuation of the observ-
ables seen in the Monte Carlo simulation of the one–body
distribution function is due to numerical noise and disap-
pears in the limit of a infinite number of test particles.

B The quantum molecular dynamics approach

An approach which goes beyond a one-body description
as explained above, is the Quantum Molecular Dynamics
(QMD) model [41,23,32,8]. The QMD model is a n-body
theory which simulates heavy ion reactions at intermedi-
ate energies on an event by event basis. Taking into ac-
count all fluctuations and correlations has basically two
advantages: i) many-body processes, in particular the for-
mation of complex fragments are explicitly treated and ii)
the model allows for an event-by-event analysis of heavy
ion reactions similar to the methods which are used for
the analysis of exclusive high acceptance data.

The major aspects of the formulation of QMD will now
be discussed briefly. For a more detailed description we
refer to [8]. The particular realizations of this model will
be discussed later.

1 Formal derivation of the transport equation

In QMD each nucleon is represented by a coherent state
of the form (we set h̄, c = 1) which are characterized by 6
time-dependent parameters, ri and pi, respectively.

φi(xi; t) =
(

2
Lπ

)3/4

e−(xi−ri(t))2/L eixipi(t). (7)

The parameter L, which is related to the extension of the
wave packet in phase space, is fixed. The total n-body
wave function is assumed to be the direct product of co-
herent states (7)

Φ =
∏
i

φi(xi, ri,pi, t) (8)

Note that we do not use a Slater determinant (with (Ap+
At)! summation terms) and thus neglect antisymmetriza-
tion. First successful attempts to simulate heavy ion re-
actions with antisymmetrized states have been performed
for small systems [21,22]. A consistent derivation of the
QMD equations of motion for the wave function under the
influence of both, the real and the imaginary part of the
G-matrix, however, has not yet been achieved. Therefore
we will add the imaginary part as a cross section and treat
them as in the cascade approach. How to incorporate cross
sections into a antisymmetrized molecular dynamics is not
yet known. This limits its applicability to very low beam
energies.

The initial values of the parameters are chosen in a
way that the ensemble of AT + AP nucleons gives a proper
density distribution as well as a proper momentum distri-
bution of the projectile and target nuclei.

The equations of motion of the many-body system is
calculated by means of a generalized variational principle:
we start out from the action [37]

S =

t2∫
t1

L[Φ,Φ∗]dt (9)

with the Lagrange functional L

L =
〈
Φ

∣∣∣∣ih̄ ddt −H
∣∣∣∣Φ〉 (10)

where the total time derivative includes the derivation
with respect to the parameters. The Hamiltonian H con-
tains a kinetic term and mutual interactions Vij , which can
be interpreted as the real part of the Brückner G-matrix
supplemented by the Coulomb interaction. We will lateron
describe the components of H in detail. The time evolu-
tion of the parameters is obtained by the requirement that
the action is stationary under the allowed variation of the
wave function. This yields an Euler-Lagrange equation for
each parameter.

If the true solution of the Schrödinger equation is con-
tained in the restricted set of wave functions φi(xi, t) (with
parameters ri,pi) this variation of the action gives the ex-
act solution of the Schrödinger equation. If the parameter
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space is too restricted we obtain that wave function in the
restricted parameter space which comes closest to the solu-
tion of the Schrödinger equation. Note that the set of wave
functions which can be covered with special parametriza-
tions is not necessarily a subspace of Hilbert-space, thus
the superposition principle does not hold.

For the coherent states and a Hamiltonian of the form
H =

∑
i Ti +

1
2

∑
ij Vij (Ti= kinetic energy, Vij = poten-

tial energy) the Lagrangian and the variation can easily
be calculated and we obtain:

L =
∑
i

[
−ṙipi − Ti −

1
2

∑
j 6=i
〈Vik〉 −

3
2Lm

]
. (11)

Variation yields:

ṙi =
pi
m

+∇pi
∑
j

〈Vij〉 = ∇pi〈H〉 (12)

ṗi = −∇ri
∑
j 6=i
〈Vij〉 = −∇ri〈H〉 (13)

with 〈Vij〉 =
∫
d3x1 d

3x2 φ
∗
iφ
∗
jV (x1, x2)φiφj . These are

the time evolution equations which are solved numerically.
Thus the variational principle reduces the time evolution
of the n-body Schrödinger equation to the time evolution
equations of 6 · (AP +AT ) parameters to which a physical
meaning can be attributed. The equations of motion for
the parameters pi and ri read

ṗi = −∂〈H〉
∂ri

and ṙi =
∂〈H〉
∂pi

, (14)

and show the same structure as the classical Hamilton
equations, (3). The numerical solution can be treated in a
similar manner as it is done in classical molecular dynam-
ics [33–36]. Trial wave functions other than the gaussians
in (7), yield more complex equations of motion for other
parameters and hence the analogy to classical molecular
dynamics is lost. If 〈H〉 has no explicit time dependence,
QMD conserves energy and momentum by construction.

2 Description of the Hamiltonian

The nuclear dynamics of the QMD can also be translated
into a semiclassical scheme. The Wigner distribution func-
tion fi of the nucleon i can be easily derived from the
test wave functions (note that antisymmetrization is ne-
glected).

fi(r,p, t) =
1

π3h̄3 e−(r−ri(t))2 2
L e−(p−pi(t))2 L

2h̄2 (15)

and the total Wigner density is the sum of those of all
nucleons. Hence the expectation value of the total Hamil-
tonian reads

〈H〉 = 〈T 〉+ 〈V 〉

=
∑
i

p2
i

2mi
+
∑
i

∑
j>i

∫
fi(r,p, t)V ij

× fj(r ′,p ′, t) dr dr ′dp dp ′. (16)

The baryon-potential consists of the real part of the G-
Matrix which is supplemented by the Coulomb interac-
tion between the charged particles. The former can be fur-
ther subdivided in a part containing the contact Skyrme-
type interaction only, a contribution due to a finite range
Yukawa-potential, and a momentum dependent part. V ij =
Gij + V ijY uk + V ijCoul + V ijmdi consists of

V ij = Gij + V ijCoul (17)

= V ijSkyrme + V ijYuk + V ijmdi + V ijCoul

= t1δ(xi − xj) + t2δ(xi − xj)ργ−1(xi)

+t3
exp{−|xi − xj |/µ}
|xi − xj |/µ

+

+t4ln2(1 + t5(pi − pj)2)δ(xi − xj) +
ZiZje

2

|xi − xj |
Zi, Zj are the charges of the baryons i and j. The real part
of the Brückner G-matrix is density dependent, which is
reflected in the expression for Gij . The expectation value
of G for the nucleon i is a function of the interaction den-
sity ρiint. It is indeed this quantity which relates the num-
ber density to the energy content of nuclear matter.

ρiint(ri) =
1

(πL)3/2
∑
j 6=i

e−(ri − rj)2/L (18)

Note that the interaction density has twice the width of
the single particle density. Moreover, the particles do not
interact with themselves. This is different compared to
VUU-type models because in QMD explicit N–N interac-
tions are treated, hence the force acting on a particle at
the position r depends on the exact positions of all other
particles, whereas the density employed in the one-body
theories (6) depends on the average number of nucleons
in the vicinity of the test particle only.

It should be noted that the width L of the distribution
function determines the interaction range of the particle
and influences the density distribution of finite systems.
Therefore its value has to be adopted to reasonable inter-
action ranges of the strong interaction.

The momentum dependence V ijmdi of the N–N interac-
tion, which may optionally be used in QMD, is fitted to
experimental data [38,39] on the real part of the nucleon
optical potential [6,41,40], which yields

Umdi = δ · ln2
(
ε · (∆p)2 + 1

)
·
(
ρint
ρ0

)
(19)

These measurements have been superseded recently by
new data [42] and thus a new parametrization has been
advanced [43].

The potential part of the equation of state (we will dis-
cuss this concept in the next subsection in more detail) re-
sulting from the convolution of the distribution functions
fi and fj with the interactions V ijSkyrme + V i,jmdi (local in-
teractions including momentum dependence) then reads:

U = α·
(
ρint
ρ0

)
+β·

(
ρint
ρ0

)γ
+δ·ln2

(
ε · (∆p)2 + 1

)
·
(
ρint
ρ0

)
(20)
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Here it should be noted that due to the definition of
ρint (18) no mean-field potentials (as e.g. (2) for VUU)
show up in the calculation of the equations of motion (14)
of QMD but a sum of two (and three) body interactions
(see 18). Hence energy and momentum are – in contrast
to single VUU ‘events’ – strictly conserved in each event.

The Coulomb interaction cannot be treated for infinite
matter, since this leads to diverging terms. In the first ver-
sions of QMD no explicit treatment of the isospin is per-
formed and the charges are replaced by effective charges,
i.e. all nucleons had been attributed the effective charge
Z = (Zproj. + Ztarg.)/(Aproj. + Atarg.). IQMD (we will
later come to that) and other more recent versions use
the real baryon charges.

The parameters µ and t1...t5 are adjusted to fit the
real part of the G-matrix and to describe the properties
of finite nuclei.

3 The relation to the nuclear equation of state

One strong motivation for the numerical simulation of
heavy ion reactions is the possibility to investigate ef-
fects of the underlying nuclear equation of state on the
dynamics and final states of these collisions. QMD is a
model for non-equilibrium dynamics with mutual interac-
tions among the constituents and therefore does not con-
tain any parametrization of the nuclear equation of state
in terms of an explicit relation between number density,
temperature and the energy density. In equilibrium and in
the thermodynamic limit (n→∞), however, such a func-
tional relation can be deduced from the nucleon-nucleon
potentials and the cross-sections employed in the model.

For the description of the energy per nucleon as a func-
tion of density (assuming T = 0) usually Skyrme type
parametrizations (see eq. (2)) are used. This ansatz is
phenomenological and can be derived for the case γ = 2
from the assumption that the particles interact with each
other with two- and threebody contact forces. It is gen-
eralized to effective higher order contact terms by setting
γ > 1 to be a real number. This generalized ansatz uses
three parameters α, β, γ; two of them are fixed by the con-
straint that the total energy should have a minimum at
the saturation density ρ = ρ0 with a value of E/A = −16
MeV which corresponds to the the volume energy in the
Bethe-Weizsäcker mass formula. Together with the con-
dition that a free particle has no binding energy (which
is automatically fulfilled within this ansatz) there remains
one degree of freedom. The third parameter is fixed by the
nuclear compressibility, which is the second derivative of
the energy at the minimum with respect to the density:

κ = 9ρ2 ∂
2

∂ρ2

(
E

A

)
(21)

Two different equations of state are commonly used:
A hard equation of state (H) with a compressibility of
κ =380 MeV and a soft equation of state (S) with a com-
pressibility of κ =200 MeV [17,27].

To derive an equation of state from the interactions
used in (18) we have to convolute the potentials with the

distribution functions assuming an infinite homogeneous
distribution. In this limit the VSkyrme and VYuk become
functions of the constant density only. The interaction
density of (18) as used in (20) can be replaced by the
position independent nuclear matter density. The integra-
tion over the relative momenta of infinite nuclear matter
Fermi distributions finally turns into a density dependence
of the momentum dependent interaction. This allows us to
obtain the compressional part of the nuclear equation of
state, which depends on the density only. The parameters
of the interactions in (18) can therefore be chosen that
way that a hard or soft eos is obtained for the infinite
matter case. It should again be noted that the parameters
of the potentials allow a relation to the nuclear equation
of state (eos) but that the microscopic description works
as well for systems far off from equilibrium where no eos
can be defined.

The interaction range parameter L influences the inter-
action density (18) for finite systems. For (homogeneous)
infinite nuclear matter the density (and thus the potential
energy) do not depend anymore on the extension of the
gaussian wavepackets. Thus, the equation of state of infi-
nite nuclear matter is independent of L. In finite matter
E/A also depends on L. Thus even two parametrizations
which yield the same eos may produce different results
for the reaction of two heavy ions. Therefore we have to
adjust L to have reasonable surface properties. In order
to allow a physical interpretation L should be in the or-
der of the size one expects for the range of the nuclear
interaction. There exists a range of values for L, which
allows to fix these properties. Larger values of L increase
the effective range of the interaction and thus lead to some
smearing of fluctuations, which are stronger for more lo-
cated wavepackets (small values of L).

Hence, the nuclear equation of state can only be de-
fined as the bulk properties in the limit of an infinite sys-
tem: The concept of the nuclear equation of state as dis-
cussed here does only make sense for large macroscopic
systems in (at least local) equilibrium, while the ansatz
with mutual interactions has no restrictions with respect
to the size and is therefore also applicable for finite sys-
tems far off equilibrium. The time evolution of the non-
thermal system of two reacting heavy ions is completely
determined by the two-body potentials and the scattering
cross sections, respectively.

In QMD the parameters t1...t5 are uniquely related to
the corresponding values of α, β, γ, δ and ε which serve
as input. The standard values of these parameters can be
found in Table 1.

4 Inclusion of collisions

As stated above the imaginary part of the G-matrix acts
like a collision term. In the QMD simulation we restrict
ourselves to binary collisions (two-body level). The colli-
sions are performed in a point-particle sense in a similar
way as in VUU or cascade: Two particles collide if their
minimum distance d, i.e. the minimum relative distance
of the centroids of the Gaussians during their motion, in
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Table 1. Parameter sets for the nuclear equation of state used
in the QMD model. S and H refer to the soft and hard equations
of state, M refers to the inclusion of momentum dependent
interaction

α (MeV) β (MeV) γ δ (MeV) ε
(

c2

GeV2

)
S -356 303 1.17 — —
SM -390 320 1.14 1.57 500
H -124 71 2.00 — —
HM -130 59 2.09 1.57 500

their CM frame fulfills the requirement:

d ≤ d0 =
√
σtot

π
, σtot = σ(

√
s, type). (22)

where the cross section is assumed to be the free cross
section of the regarded collision type (N − N , N − ∆,
. . . ).

Beside the parameters describing the N–N potential,
the cross sections constitute another major part of the
model. In principle, both sections of parameters are con-
nected and can be deduced from Brückner theory. QMD-
calculations using consistently derived cross-sections and
potentials from the local phase space distributions have
been discussed e.g. in [72]. Such simulations are time-
consuming since the cross-sections and potentials do ex-
plicitly depend on the local phase space population.

Within the framework of using free cross section one
may parametrize the cross section of the processes to fit to
the experimental data if available. For unknown cross sec-
tions isospin symmetry and time reversibility is assumed.

Alternatively, cross-sections may be obtained from the-
oretical considerations. For one particular QMD-version
the one boson exchange model has been employed for this
purpose. This has the advantage to have a first handle for
the description of cross sections in the nuclear medium.

If two particles scatter, the direction of the final mo-
menta will be distributed randomly in such a way that
the distribution of many identical collisions corresponds
to the measured cross section. For elastic scattering the
distribution is taken from [47]:

dσel
dΩ

∼ exp(A(s) · t), (23)

where t is −q2, the squared momentum transfer (which
also includes the information on the polar angle) and

√
s

is the c.m. energy in GeV.
It should be noted that the presented treatment of

the collisions may cause problems with causality since the
particles can interact immediately at a distance. The col-
lision information is given to both particles at the same
time when they are at closest position. It should also be
noted that the time order of the collisions is determined
in a common system of all particles. The evolution of the
system is propagated with one common clock. As it has
been already pointed out by Kodama et al. [48] the time

ordering is not unique. Thus the choice of the common ref-
erential system may influence the observables. Normally
a system is chosen where the relative velocities with re-
spect to that system are as small as possible. Thus BQMD
used the nucleus-nucleus CM system as referential system
and VUU and IQMD use the nucleon-nucleon CM system.
The choice of the Lab system as referential system would
e.g. cause for the system Au(1AGeV)+Au b = 3fm, hard
eos, an enhancement of the flow (in IQMD pdirx rises from
98± 3 MeV/c to 110± 3 MeV/c in the Lab system ) and
a reduction of the pion number (in IQMD Nπ falls from
64± 1 to 60± 1 in the Lab system).

Also the choice of the minimum distance point as colli-
sion point can be motivated within this respect. An earlier
collision (e.g. at the point when the distance is sufficient to
fulfill the distance condition) could cause stronger acausal-
ities. It will also reduce the mean free path and thus en-
large stopping and flow [49].

5 Pauli blocking due to Fermi statistics

The cross section is reduced to an effective cross section
by the Pauli-blocking. For each collision the phase space
densities in the final states are checked in order to assure
that the final distribution in phase space is in agreement
with the Pauli principle (f ≤ 1). Phase space in QMD is
not discretized into elementary cells as in one-body mod-
els like VUU, in order to obtain smooth distribution func-
tions the following procedure is applied: The phase space
density f ′i at the final states 1′ and 2′ is measured and
interpreted as a blocking probability. Thus, the collision
is only allowed with a probability of (1 − f ′1)(1 − f ′2). If
the collision is not allowed the particles remain at their
original momenta.

The Pauli blockers of VUU and QMD show efficien-
cies of about 94-96 %, i.e. a single ground state nucleus
with Fermi momentum would show a blocking rate of this
amount. In order to reduce the noise of spurious collisions
in ground state nuclei additional conditions allow a nu-
cleon only to collide with a nucleon of the other nucleus
or with a nucleon that has already undergone a collision.
Nevertheless the problem of Pauli blocking causes a lim-
itation of the calculated system to have not less incident
energy than about the Fermi energy.

C Numerical structure

The QMD model consists of three major parts, namely i)
the initialisation of projectile and target, ii) the propa-
gation of nucleons, resonances and newly produced par-
ticles due to their mutual potential interactions, and iii)
the hard collisions according to the energy dependent
cross section for the various channels together with the
Pauli-blocking.

For the propagation the description of the potential
(or to be more exact of the real part of the Brückner G-
matrix) is of crucial importance.

The solution of the transport equations for theN -body
distribution function is done in the following way:
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1. Projectile and target are initialized. For each of these
nuclei the nucleons initialized according to a distribu-
tion f(r, p, t = 0). This distribution is essentially con-
strained by the requirement to reproduce the ground
state properties of the two nuclei, i.e. radii, binding
energies.

2. The particles are propagated using Hamilton’s equa-
tions of motion (14) with a given Hamiltonian 〈H〉.

3. Two particles close in coordinate space may perform a
collision. The particles change their momenta respect-
ing the Pauli principle.

The input into the program may be subdivided into
three classes of parameters

Reaction parameters: projectile and target masses (and
charges), bombarding energy, impact parameter. They
define the whole kinematics of a single event.

Physics Parameters: interaction range, potential parame-
ters, in medium cross sections and decay widths, etc.
They correspond to a detailed description of interac-
tions and may be changed within a reasonable range.
Finally their deduction is a particular goal of the com-
parison between calculation and experiment.

Technical parameters: time step size, initial distance, cut-
off parameters, maximum collision distance, etc. They
are used to perform effective calculations on a com-
puter. The observables should not depend on them.

If all these parameters are fixed the calculation of a
single event can be performed in the following way:

– initialize projectile and target nuclei in their “ground
states” as mentioned above,

– propagate the constituents of the system according
to their mutual potential and hard scattering inter-
actions, this includes
– calculation of interaction densities, forces and the

Hamiltonian
– propagation of all particles according to Hamilton’s

equation of motion
– perform all collisions within this time step. Decide

for each collision whether its final state is Pauli-
blocked. If this is the case: keep momenta of col-
lision partners unchanged, otherwise change mo-
menta according to the angular distribution of this
particular channel.

– output of information (coordinates, momenta, scat-
tering partners, . . . ) about the intermediate reaction
stages and output of the final phase-space configura-
tion (which would correspond to the freeze-out config-
uration in a thermal picture).

This procedure is repeated until sufficient statistics, i.e. a
large number of independent events, is obtained.

This principal structure is common for all QMD real-
izations, which differ, however, in details and the initial-
isation of projectile and target. In the following we will
study the influence of these differences on observable and
nonobservable quantities.

III Description of particular QMD model
realizations

The original QMD [19,23] program was developed further
to include momentum dependent interactions [41,32].

A BQMD

The original QMD has been rewritten by Bohnet et al.
[51] for the purpose of studying low energy fragmenta-
tion data. This program has been dubbed BQMD since
it was designed for describing the proper binding of a nu-
cleus in order to describe fragmentation processes [52–55].
An improvement on the stability against artificial particle
evaporation has been achieved in BQMD by a procedure
explained below which causes fluctuations of the energy
around the mean value by 2 MeV/nucleon.

1 Initialisation in BQMD

In BQMD the nucleons are distributed within a sphere
with a Wood-Saxon-type density profile. (The original QMD
used a sphere for the distribution of the centroids of the
Gaussians.) The maximum Fermi-momentum is limited by
the local binding energy of the nucleon in order to keep
all particles bound. By this procedure, however, the mean
kinetic energy of the particles is lowered to about 10 to
12 MeV/nucleon. The ground state central density is as-
sumed to be ρ0 = 0.15 fm−3. The Gaussian width for the
interactions are chosen to be L = 4.33 fm2. The binding
energy as given in the Weizsaecker mass formula is re-
produced from Lithium up to the heaviest nuclei [8]. As
already seen in Fig. 10 of [8] this particular version suffers
from fluctuations of the rms radius. The consequences will
be discussed later.

2 Potentials in BQMD

The range and the strength of the Yukawa potential in
BQMD has been chosen to describe the surface of the nu-
cleus best. In order to keep the nuclear equation of state
and the binding energy independent of the Yukawa inter-
actions and to keep the binding energy at its experimen-
tal value, the coupling constant t1 of the Skyrme-type two
body interaction. is modified according to [8]

ti1(i)ρ(ri0) = t1ρ(ri0)−
∑
j

UY ukij . (24)

Note that the Skyrme and Yukawa coupling constants are
different for each particle here. With this procedure the
validity of Newtons theorem actio = reactio can be as-
sured on the ensemble average only, which also leads to
violation of energy conservation in single events. The en-
ergy fluctuates about 2 MeV/nucleon around the mean
value [8]. The range of the Yukawa-potential is chosen as
1.5 fm.
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3 Collision term in BQMD

BQMD has in common with the original QMD that it uses
nucleons and deltas only. The employed cross sections have
been parametrized by Cugnon [47]. All nucleons interact
with the same average cross section without distinction
in isospin. The elastic cross section is given by a constant
value of 55 mb for collisions with

√
s ≤ 1.8993 GeV and

for higher energies by the parametrization:

σel(mb) =
35

1 + 100 · (√s/GeV − 1.8993)
+ 20 (25)

The inelastic cross section NN → N∆ is zero for
√
s ≤

2.015 GeV and for higher values by the parametrisation

σin(mb) =
20x2

0.15− x2
x =
√
s/GeV − 2.015 (26)

The angular distribution of the collisions is described

by
dσel
dΩ ∼ exp(A(s) t) with

A(s) = 6
(3.65 (

√
s/GeV − 1.8766))6

1 + (3.65 (
√
s/GeV − 1.8766))6

. (27)

B IQMD

The Isospin-QMD (IQMD) [58,49] treats the different
charge states of nucleons, deltas and pions explicitly, as
inherited from the VUU model. IQMD has been used for
the analysis of collective flow effects of nucleons [58,63–
65] and pions [60–62]. Comparisons to experimental data
with this model have been presented in [66–68]. As it has
been developed from the VUU-model, its coding is there-
fore independent of the original QMD. The isospin degrees
of freedom enter into the cross sections (here cross sections
of VUU [17] similar to the parametrizations of VerWest
and Arndt [59] have been taken, see also [62]) as well
as in the Coulomb interactions. The elastic and inelastic
cross sections for proton-proton and proton-neutron colli-
sions used in IQMD are shown in Fig. 1. The cross section
for neutron-neutron collisions are assumed to be equal to
the proton-proton cross sections.

1 Potentials used in IQMD

The IQMD-model offers rather stable density distributions
and good energy conservation, however for the price of
nucleon evaporation and and improper binding energies
(Ebind ≈ 4− 5 MeV/nucleon for heavy nuclei instead of 8
MeV/nucleon).

In addition to the use of the explicit charge states of all
baryons and mesons a symmetry potential between pro-
tons and neutrons corresponding to the Bethe-Weizsäcker
mass formula has been included

V ijsym = t6
1
%0
T3iT3jδ(ri − rj) t6 = 100 MeV (28)

Fig. 1. The elastic and inelastic cross sections for proton-
proton (pp) and proton-neutron (pn) used in IQMD. The
neutron-neutron cross section is assumed to equal to the pp
case. The total cross section is equal to the sum of elastic and
inelastic cross section

where T3i and T3j denote the isospin projections of par-
ticles i and j. Other baryonic potentials like V ijSkyrme and
V ijmdi are defined isospin-independent like in all other fla-
vors. The Yukawa potential in IQMD V ijYuk is very short
ranged (µ = 0.4 fm in contrast to µ = 1.5 fm in BQMD)
and weak. The modification of the α term of the static
potential is done in an particle independent way. As in
BQMD this corresponds to the interpretation that an ad-
ditional term in the Skyrme ansatz which is proportional
to (∇ρ)2 can be expanded in first order to a term linear in
density (which reduces α effectively) plus Yukawa poten-
tials. Additional attractive Yukawa forces hence modify
the EOS (and therefore the α term has to be modified to
obtain the same EOS). Yukawa forces stabilize the nuclei
because of the increase of the interaction range as com-
pared to a δ-like Skyrme-potentials. Thus nucleons notice
earlier that they will arrive at the surface and are more ef-
fectively decelerated as without this potential. In addition
the fluctuations are reduced.

2 Pions in IQMD

Free pions are moving under the influence of the Coulomb
interactions. Pions may be produced by the decay of a ∆-
resonance and may be reabsorbed by a nucleon forming a
delta again. IQMD and HQMD, which will be described
in the next section, differ concerning the pion production
in the production cross sections (HQMD uses cross sec-
tions based on the one boson exchange model), the in-
cluded resonances (HQMD contains additionally N∗ and
NN → ∆∆ collisions) and the angular distribution of in-
elastic collisions (HQMD has more realistic non-isotropic
distributions obtained from OBE calculations which are
not present in original IQMD). Recent updates of IQMD
calculating the pion production (e.g. [61,62]) also use the
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inelastic angular distributions of HQMD. The effect of this
modification on nucleonic observables is quite small.

3 Initialisation in IQMD

The most important difference to BQMD is the initiali-
sation. In IQMD the centroids of the Gaussians in a nu-
cleus are randomly distributed in a phase space sphere
(r ≤ R and p ≤ pF ) with R = A1/3 · 1.12 fm correspond-
ing to a ground state density of ρ0 = 0.17 fm−3. The Fermi
momentum pF depends on the ground state density. For
ρ0 = 0.17 fm−3 it has a value of about pF ≈ 268 MeV/c.
While, as said, in BQMD the maximum momentum is de-
termined by the local binding energy (which causes an ef-
fective reduction of the total Fermi energy to about 10 – 12
MeV), in IQMD the momenta are uniformly distributed
within a momentum sphere p ≤ pFermi ≈ 268 MeV/c
without further local constraints. Therefore it may hap-
pen that nucleons close to the surface, where the local
potential energy is low, are unbound initially. This possi-
bility is not given in BQMD or HQMD. It gives, however,
a reduced binding energy per nucleon as compared to the
Weizsäcker mass formula. Hence the initialized nuclei are
less stable against spurious particle evaporation as com-
pared to BQMD. On the other hand this ansatz makes
available the full Fermi-energy calculated from the Skyrme
ansatz. The full Fermi pressure yields (as compared to
BQMD) a stronger stability of the density profile against
vibration modes. Finally it should be noted that IQMD
performs a Lorentz contraction of the nucleus coordinate
distribution which is not present in BQMD and which be-
comes important for higher energies E/nucleon > 1 GeV.

4 Interaction range

As it has already been stated, the Gaussian width can
be regarded as a description of the interaction range of a
particle. Its influence disappears for infinite nuclear matter
whereas for finite systems it may play a non negligible role.

In IQMD the Gaussian width can be used as an op-
tional input parameter. The default version of uses a sys-
tem dependent Gaussian width while BQMD uses L =
4.33 fm2 independent of the system size. The system de-
pendence of L in IQMD has been introduced in order to
obtain maximum stability of the nucleonic density pro-
files. As an example for Au+Au a value of L = 8.66 fm2

is choosen, for Ca+Ca and lighter nuclei L = 4.33.

C HQMD

HQMD is an upgrade of QMD which combines optional
features of BQMD and IQMD. It does not remedy the
shortcomings of BQMD and IQMD, but allows to study
the influence of the different modules on physics results.
In addition, higher resonances (the N∗(1440)), free pions
and the proper isospin coupling have been incorporated
by Huber et al. [56]. The isospin degrees of freedom play

an important role especially for the particle production.
The employed inelastic cross sections NN → NN∗, N∆
and ∆∆ have been calculated within an one-boson ex-
change model (OBE). Also the angular distribution of the
inelastic reactions was calculated and parametrized in the
following way:

dσin
dΩ

∼ a(s) exp(b(s) · cos θ) , (29)

a(s) and b(s) are functions of
√
s and vary in their defini-

tion for different intervals of
√
s (see Table 2). θ is the po-

lar angle. It should be noted that VUU, BUU and IQMD
(in its older version) assumed isotropic scattering for the
inelastic channels which causes differences in the flow at
higher energies. For elastic collisions a new parametrisa-
tion [57] has been used which can be taken from Table 3.

In addition the numerical propagation routines have
been changed to a higher accuracy. A 4th order Runge-
Kutta propagation scheme allows an energy conservation
of about 1 per mille. The Yukawa interaction has been
suppressed.

This upgrade of QMD which has been dedicated to the
question concerning the meson production. It is quoted as
HQMD because it contains higher resonances.

HQMD offers the possibility to choose between the
two initialisation modes of BQMD and IQMD. Moreover
one can choose between the different parametrizations of
the cross section as described above: the cross section
parametrization used in IQMD and that used in BQMD.
It was checked that it reproduces the results obtained with
BQMD and with IQMD if the corresponding subroutines
are used. Therefore it may be directly used to analyse the
effects of the different ingredients in the QMD flavours.

D Other flavours

There exist several other flavours of QMD. Peilert et al.
use an extension of QMD with additional implementa-
tion of a so-called Pauli potential [46]. These models use
a strong repulsive potential which depends on the dis-
tance of the particles in phase space. It is effective in
momentum- and in configuration space and prevents two
identical particles from coming too close in phase-space.
Its parameters have been adjusted to the temperature-
and density-dependence of the energy per particle of an
ideal Fermi-gas [69,70]. With aid of such a potential self-
consistent nuclear ground states for nuclei with N neu-
trons and Z protons as well as for infinite nuclear matter
can be constructed by searching for the minimum in the
multi-dimensional potential-energy surface of N neutrons
and Z protons. The nucleons carry their proper Fermi-
momentum, however due to the momentum-dependence
of the Pauli-potential, their velocities (=kinetic momenta
∂H/∂p) vanish in the ground state. This can be inter-
preted as a first approximation to antisymmetrization in
finite nuclei on the two-body level. However one should
note that for the scattering of individual nucleons a Pauli
potential and antisymmetrisation yield different effects.
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Table 2. a(s) and b(s) as functions of the c.m. energy

x =
√
s (GeV) a (fm) b

2.104 – 2.12 294.6 (x− 2.014)2.578 19.71 (x− 2.014)1.551

2.12 – 2.43 0.01224
(x−2.225)2+0.004112

19.71 (x− 2.014)1.551

2.43 – 4.50 (2.343/x)43.17 33.41 arctan(0.5404 (x− 2.146)0.9784)

Table 3. Elastic cross section parametrization used in QMDRKNC and HQMD as a function of the relative momentum in the
CM-frame

x = |∆ppp(CM)|/1 GeV σel(mb) for pp, nn σel (mb) for pn

x < 0.8 23.5 + 1000 · (0.7− x)4 33 + 196 · |0.95− x|2.5
0.8 < x < 2 1250/(x+ 50) − 4 · (x− 1.3)2 31/

√
x

2 < x 77/(x+ 1.5) 77/(x+ 1.5)

Konopka et al. generalized this concept by treating colli-
sions of Gaussians instead of point particles as it is the
case in all other QMD versions. For the sake of numerical
feasibility the cross section has to be assumed as constant.
This model has been utilized for analyses of the FOPI-data
at lower energies [71]. The basic differences in the observ-
ables calculated with the Pauli-QMD and with IQMD can
be explained by the use of a isotropic 41 mb cross section
in the Pauli-potential QMD. However, one should stress
that the Pauli-potential has - due to the strong momen-
tum dependent potential - a different physical input as
compared to all flavours discussed and hence a detailed
comparison is not intended in this paper.

Further studies with QMD have been done by Jaenicke
et al. who replaced potentials and cross sections of BQMD
by those calculated from a Brücker G-matrix [72]. Com-
parison of experimental data with this model has been
performed by the FOPI-collaboration [68].

Lehmann and Puri extended HQMD by including a rel-
ativistic covariant propagation scheme of the RQMD-type.
The physical inspiration of the scheme was taken from the
RQMD -model of Sorge [74], which originally was footed
on the IQMD and vastly extended for the description of
high energy collisions in the potential and the collision
parts. Similarly, the RQMD of Lehmann and Puri is an
numerical extension of the HQMD model. The inclusion
of a covariant treatment of initialisation, Pauli-blocking
and potentials yield at high energies (E/A > 1GeV) some
differences to the ‘nonrelativistic’ HQMD which are de-
scribed in [75,76]. The relativistic and the nonrelativistic
version agree at low beam energies. Hence this program
allows a systematic investigation from very low energies
to very high energies. The required computing time, how-
ever, is one order of magnitude higher.

Kaon production has been intensively studied [80]
using a modified version of HQMD. The differences are
the neglect of free pions and the parametrization of the
inelastic cross sections where only the reaction channel
NN → N∆ has been employed. Differences in the kaon
production between this version and IQMD have been dis-
cussed in [73].

IV Numerical test and results

The above discussed QMD versions allow for simulations
of heavy ion collisions up to ≈ 2 GeV/nucleon. Above
this energy higher resonances, which are not included in
the models under consideration become more and more
important. The model gives detailed information about
all one-body observables, such as single particle spectra,
and many-body observables, such as particle correlations
and fragment formation, on an event-by-event basis. Thus
the structure of these theoretical data is analogous to ex-
perimental data. The independent development of BQMD
and IQMD including different model assumptions lead to
different results in some cases. In this section, we there-
fore compare several QMD versions with particular at-
tention to some standard observables. It is demonstrated
that most of the differences are related to the different
treatment of the initialisation of the two colliding nuclei.

1 Rapidity distributions

A quantity, which is crucially related to the possible for-
mation of a thermally equilibrated source is the rapidity
distribution of baryons.

Figure 2 shows the rapidity distribution dN/dy of nu-
cleons in the reaction Au+Au, b = 3 fm at 1 GeV/nucleon
incident energy. IQMD (squares, dotted line), BQMD (cir-
cles, full line) and VUU calculations (triangles, dashed
line) using a hard equation of state without momentum
dependent interaction give quite similar results. BQMD
shows a slightly broader distribution than IQMD and VUU.
As it has been already stated in [41] the rapidity distri-
bution depends strongly on the collision term and only
slightly on the used nucleonic potentials. From this we
can conclude that the hard collisions do not lead to large
differences.

The remaining differences of about 40 units at midra-
pidity divides up as follows (the statistical error of each
of the midrapidity dN/dy values amount to about 10-15
units): The change from large to small width enhances
the value by about 20 units, whereas the different cross
sections contribute a lowering by 30 units when switching
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Fig. 2. Rapidity distributions dN/dy of nucleons in the re-
action Au(1 GeV/nucleon)+Au, b=3fm for VUU, IQMD and
BQMD. In all calculations a hard equation of state without
momentum dependent interactions has been used

from IQMD to BQMD. The BQMD initialisation lowers
by about 20 units and the Yukawa potential in BQMD
reduces by about 10 units.

At lower bombarding energies the dynamics is no longer
dominated by the hard collisions and the nucleon poten-
tial becomes more important. At 150 MeV/nucleon, the
rapidity distributions exhibit some larger differences be-
tween the two QMD version used. This, however, is due to
the inclusion of Yukawa forces in BQMD. The results look
more alike if this term is omitted in both calculations. The
dN/dy at midrapidity reaches about 11% smaller values
in BQMD, which are decomposed as follows: 7% enhance-
ment due to the interaction range, 9% reduction due to
the cross sections, 5% reduction due to Yukawa, and a
slight reduction (≈ 2%) due to different initialisations.

2 Transverse flow

Let us now focus on an observable whose investigation is
strongly motivated by its dependence on the nuclear equa-
tion of state [4,27,32] (besides its dependence on the col-
lision term and on the centrality), namely the transverse
flow in plane. This variable turns out to be extremely sen-
sitive to a lot of parameters as we will see. The amount
of transverse flow created in heavy ion reactions is known
as a measure of the pressure built up during the reaction
and it thus can provide information about the underlying
equation of state.

Figure 3 compares the excitation functions of flow for
VUU, IQMD and BQMD with their default width pa-
rameters L = 8.66 fm2 and L = 4.33 fm2 respectively. It
is found that VUU and IQMD show a similar behaviour
with a rise of the flow up to 1 GeV incident energy (which
is also in good agreement with experimental data) while
BQMD shows rather weak rise of the flow. This weak rise
is in disagreement with experimental flow data. The rea-
sons of the differences between BQMD and IQMD shall
be briefly investigated.

Fig. 3. Excitation function of the system Au+Au at b = 3fm
impact parameter obtained with BQMD, IQMD and VUU in
their default versions

The transverse flow is not only sensitive to the repul-
sion of the compression zone formed by excited nuclear
matter, but also to surface properties, such as the range
of the nuclear interaction. This quantity may be varied
within the QMD approach in two different ways:

The range of the optional Yukawa force in QMD is
an adjustable parameter, it can be used to stabilize the
width of the nuclear surface of a given density profile.
The width parameter L of the gaussians serves as an ef-
fective interaction range as well. It should be noted that
a change of the interaction range also changes the density
gradient in inhomogeneous systems (this can be demon-
strated by regarding the density profile of a ’box’) and
therefore directly enters into the gradient of the poten-
tial. It was found that default BQMD calculations with
a Yukawa potential yielded a directed transverse momen-
tum, pdirx which is about 10 MeV/c higher than for cal-
culations where only the Skyrme interaction is used. This
is due to the fact that a finite range Yukawa smears out
the potential gradient more than a δ-function and hence
reduces the force in transverse direction.

In IQMD the inclusion of Yukawa forces does not give
significant effects on the nucleonic flow. It should however
be noted, that in IQMD the range of the Yukawa force is
smaller (0.4 fm as compared to 1.5 fm of BQMD) and that
actio=reactio is respected for the two-body interactions.

Both models agree in the observation that a broaden-
ing of the Gaussian width L reduces the flow. This also
corresponds to the fact that the density gradient to the
high density region is smeared out.

The influence of the interaction range on the flow can
be studied in Fig. 4 which compares IQMD results of the
flow for L = 8.66 fm2 and L = 4.33 fm2. In IQMD the
default value for Au+Au is chosen to be L = 8.66 fm2. A
smaller interaction range enhances the flow value by about
10 MeV/c at 400 AMeV and by 20 MeV/c at 1 AGeV. A
further difference caused by the interaction range is the
density of the saturation of the potential, i.e.the density
where the potential supports maximum stability of the
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Fig. 4. Excitation function of the system Au+Au at b = 3
fm impact parameter obtained with IQMD using the width of
L = 4.33 fm2 and L = 8.66 fm2

initial state versus vibration modes. For the IQMD initial-
isation the maximum stability is reached for L = 8.66 fm2

at about ρ = 0.17fm−3 and at about ρ = 0.15fm−3 for
L = 4.33 fm2.

The differences in the flow results between BQMD and
IQMD motivated to search for parameters which might in-
fluence the flow. There are three major differences between
BQMD and IQMD calculations: Besides the interaction
range they concern the initialisation, the cross-sections
employed and the different values for the saturation den-
sity. For a better comparison we changed in the following
the interaction range of IQMD to L = 4.33 fm2. As a first
step we investigate the dependence on the initialisation
of the nuclei, which also includes the role of the value of
ρ0. The BQMD and IQMD initialisations differ in three
aspects: a) the shape of the coordinate distribution of the
particles, b) the average central density in the nucleus and
c) the limitation of the Fermi momentum to the value ob-
tained by a local density approximation or the full Fermi
momentum, respectively.

The dependence on each of these differences is studied
in Fig. 5 which shows results of a HQMD calculation with
inclusion of modules from BQMD and IQMD. It demon-
strates that the very same dynamics, i.e. same forces, same
cross-sections and same equations of motion lead to con-
siderably varying results depending on the initial condi-
tions chosen.

Here IQMD-ini (squares) denotes the default IQMD
initialisation with L = 4.33 fm2. using hard sphere for
the centroids, no constraint to the Fermi-momentum and
ρini = ρ0 = 0.17 fm−3. The diamonds describe a calcula-
tion with a different initial density ρini = 0.15 fm−3. We
see a reduction of the flow at highest densities. This effect
is known from hydrodynamical studies using the Rankine-
Hugoniot equations. [84]. It should be noted that the val-
ues obtained with L = 4.33 obtained at ρini = 0.15 fm−3

(i.e. at maximum stability) are comparable with the val-
ues obtained with L = 8.66 fm2 and ρini = 0.17 fm−3 i.e.
at maximum stability for the L = 8.66 fm2 case.

Fig. 5. Excitation function of the system Au+Au at b = 3
fm impact parameter obtained with HQMD (default collision
term) using the BQMD initialisation, a hard sphere initial-
isation with reduced Fermi momentum and with full Fermi
momentum and the IQMD initialisation

The triangles denote a calculation where additionally
the Fermi momenta are constrained by the binding energy
(similar as done in BQMD). Here we see an enhancement
of the flow at low energies. Besides the flat shape of the
excitation function this constraint on the Fermi momen-
tum also causes strong fluctuations of the rms radii [8].
As a consequence – as we will see later – this introduces
a considerable systematic error of the flow values.

BQMD-ini (circles) finally denotes the BQMD default
with a Wood Saxon distribution, the local constraints of
the Fermi momentum and the saturation density of ρini =
0.15 fm−3. Since the density profile is now smeared out
even more an additional reduction of the flow can be found
at high energies.

The composition of all three effects causes the BQMD-
initialisation to yield a very flat excitation curve while for
the IQMD-initialisation a strong dependence of the flow
on the incident energy is observed.

It should be noted that similar effects as reported for
the flow are also found for the particle production. These
effects are weaker but lead to the same picture. Effects
that simulate a weaker repulsion and thus cause a weaker
flow will yield an enhanced particle production.

The collision term also influences the excitation func-
tion of flow. It was found that the collision terms of IQMD
and HQMD yielded about the same values while the BQMD
collision term causes a decrease of about 5-10 MeV/c rel-
ativ to the IQMD collision term.

The different pdirx values reflect themselves in different
dependences of px on the rapidity. Figure 6 compares the
transverse momentum in the reaction plane px(y) for the
system Au(1AGeV)+Au at b=3 fm impact parameter. We
see that IQMD gives values similar to VUU while BQMD
yields much lower flow values close to beam and target ra-
pidity. It should furthermore be noted that similar effects
have been found in the analysis of the flow out of plane.
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Fig. 6. Comparison of the transverse flow px(y) of nucleons
in the reaction Au(1 AGeV)+Au b=3 fm for VUU, IQMD and
BQMD, all using a hard equation of state without momentum
dependent interactions

BQMD yields a less pronounced squeeze-out as compared
to VUU and IQMD.

In conclusion it is found that the description of the flow
depends strongly on the detailed description of the initial
state of the nuclei as well as on the interaction range. The
constraints on the Fermi momentum as used in BQMD
lower the Fermi pressure and yield a nearly flat excitation
function of the flow which is in contradiction to current
data.

3 Fragment production

Another key issue for heavy ion reactions is the simulta-
neous production of several intermediate mass fragments,
i.e. clusters which are heavier than α’s but considerably
lighter than typical fission products. This phenomenon,
usually referred to as multifragmentation, has lead to nu-
merous speculation that this may be the signal for the
occurrence of a liquid vapor transition in nuclear matter
[85].

A lot of studies involving QMD models addressed this
issue as well. QMD does not explicitly include a phase
transition, even more so, it is a non-equilibrium transport
theory, where equilibrium need not necessarily be estab-
lished to be applicable to multifragmentation reactions, as
it is the case in statistical models for nuclear fragmenta-
tion [86].

It should be noted that there exist problems in describ-
ing the properties of Fermi systems at low temperature
[46,87]. However, it should also be noted that the frag-
ment distributions obtained with QMD are in the range
of the different statistical models [53]. The difference be-
tween the distributions from QMD and these models is
in the same order the differences between those models
themselves.

QMD predicted the emission of several fragments in
a single event, qualitatively similar to the experimental

observations and at lower energies also quantitatively [51,
25,26,52].

A realistic description of fragmentation processes with-
in QMD is one of the most complicated tasks. At higher
bombarding energies (E > 400 MeV/nucleon) fragment
formation is already a rather rare process. At lower ener-
gies, where multifragmentation is a major reaction chan-
nel (between 50 and 200 MeV/nucleon), the reaction is
slowed down, which requires a improved accuracy of the
calculation.

One aspect is that single nuclei at rest also start to
evaporate nucleons and fragments after 50–100 fm/c. This
effect has to be minimized which sets stringent conditions
on the stability of single nuclei. Moreover the nuclear bind-
ing needs to be properly described.

At 50 MeV/nucleon beam energy for a symmetric sys-
tem, each nucleon carries 12.5 MeV kinetic energy in the
center of mass. Together with a binding energy of about 8
MeV per nucleon, only 4.5 MeV/nucleon are available in
the center of mass. This has severe implications on the re-
quired accuracy of the description of ground state nuclei.
If the binding energy is missed by only 1 MeV/nucleon,
then a 22% different total energy is used in the calcula-
tion. At 100 MeV/nucleon this uncertainty still amounts
to 6%.

One crucial aspect, as far as the fragmentation proper-
ties of QMD are concerned, is the interaction range which
is directly related to the width of the gaussian wavepack-
ets. More extended wave packets i.e. a long interaction
range leads to a smaller number of fragments. These frag-
ments are somewhat heavier than those fragments from
simulations with smaller wavepackets. This behavior has
essentially two reasons: in the case of broader gaussians,
particles in a cluster are bound to a larger number of other
nucleons inside the cluster. On the other hand, with a
smaller width the fluctuations are enhanced and an ex-
cited nucleus dissolves more easily.

For example, BQMD with a Gaussian width of L =
4.33 fm2 gives 12.7 IMFs in Au (150 MeV/nucleon) + Au
at b=3 fm. IQMD with more extended gaussians (L =
8.66 fm2) yields 6.6 IMFs only. It should be noted that
in the present analysis the charge has not been regarded
(especially since BQMD has no explicit charges). There-
fore we used 5 ≤ A ≤ 19 for the numbers obtained above.
However, if we employ the same Gaussian width for both
models we obtain almost the same results. This can be
seen in Fig. 7 where the fragment mass spectra have been
compared for both models using both interaction ranges.

Parameters other than the interaction range, e.g. the
value of the saturation density or the different treatment
of Fermi momenta do not affect the intermediate mass
fragment multiplicity significantly. We also find no differ-
ences on the different cross sections or potentials.

The range of Yukawa forces do not significantly influ-
ence the mass distribution of the fragments as it was found
for the Au(150AMeV)+Au at b = 3 fm. This observable
shows only dependence on the Gaussian width.

In conclusion it can be stated that the interaction
range shows strong significance on the fragment produc-
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Fig. 7. Fragment mass distribution obtained by BQMD and
IQMD for the system Au(150 MeV) + Au b=3 fm, both with
L = 4.33 fm2 and L = 8.66 fm2

tion. The smaller values of L = 4.33 fm2 used in BQMD
show much better agreement to existing data as L =
8.66 fm2 used in IQMD. Furthermore BQMD shows a bet-
ter stability against particle evaporation and better bind-
ing energies. This is due to the constraints on the Fermi
momentum as well as to the Yukawa potentials. The vi-
bration modes resulting from the Fermi momentum con-
straints do not show strong influences on the fragmenta-
tion, at least in central collisions. Although the initiali-
sation does not have a strong influence on the fragmen-
tation pattern in central collisions, an initialisation which
combines both, a proper binding energy (as it is achieved
in BQMD) and a proper density profile (as it is done in
IQMD) is preferred. This achievement is one of the main
design goals of a new molecular dynamics scheme of the
QMD type [89].

4 Particle production

Let us now turn to the question of particle production.
In the regarded energy domain mainly the production of
pions and subthreshold kaons is of interest.

Concerning the description of pion production the re-
sults of BQMD are not regarded, since it has no free pions
and the cross section parametrization was not adapted to
pion physics. Instead we will compare HQMD and IQMD.
It is found that the cross section parametrizations of HQMD
and IQMD yield very similar results. The change of the
interaction range changes the pion multiplicity by only 5–
10%. A strong influence can, however, be obtained from
the initialisation procedure. As an example, rapidity dis-
tribution of pions are displayed in Fig. 8. The two calcu-
lations differ only in the initialisation, forces and cross-
sections are identical in both cases. The BQMD initialisa-
tion (that with the lower density) yields about the same
shape of the pion rapidity distribution as a calculation
using the IQMD initialisation. The absolute number of
produced pions is about 30-40% larger in the case of the
BQMD initialisation.

Fig. 8. Rapidity distributions of pions for Au(1
GeV/nucleon)+Au reactions at b=3fm obtained with QMD
employing the BQMD initialisation (circles) and the IQMD
initialisation (diamonds)

The difference cannot be explained neither by Pauli
blocking nor by absorption effects. It is found that al-
though the calculation with the IQMD-initialisation yields
higher densities, the calculation with a BQMD-initialisation
shows higher collision numbers. This corresponds to the
fact that up to maximum compression calculations with a
BQMD-initialisation loose compressional energy (and thus
gain kinetic energy) while calculations with an IQMD-
initialisation gain compressional energy and loose kinetic
energy.

The arguments used in the discussion of the flow (see
Fig. 5) still hold for the particle production. The different
parts of the initialisation which cause an increase of the
flow yield correspondingly a decrease of the pion num-
ber. For Au(1 AGeV) +Au b = 3 fm the change of the
initialisation density from 0.17 to 0.15 fm−3 yields (for
L = 4.33 fm2) an increase of about 20 % and the change
from a hard sphere initialisation to a Woods-Saxon type
initialisation another enhancement of about 15 %. The
constraints on the Fermi momentum yield no visible in-
fluences on the pion number at 1 AGeV energies.

It should furthermore be stressed that all regarded
models (VUU, IQMD, HQMD) perform a delta decay us-
ing a lifetime which is the inverse of the mass-dependent
decay-width. Changes concerning this description might
have strong effects on the rapidity distributions.

The study of subthreshold kaon production is moti-
vated by the strong dependence of the kaon multiplic-
ity on the nuclear eos [41,73,80,82]. It has been found
that a hard equation of state yields a stronger repulsion
and lower densities of the compression region than a soft
eos [88]. Therefore a hard eos shows stronger flow and
a smaller kaon multiplicity. The pion multiplicity shows
only slight dependences on the eos since both equations of
state yield about the same compression densities [4,88].
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Kaon production have not been studied within the
BQMD model but with an upgrade version called QM-
DRKNC [80]. This version does not include free pions,
therefore the deltas have an infinite lifetime. A first com-
parison of this version with IQMD has been presented
in [73]. The kaon numbers obtained with both models
agree for Au (1 AGeV) +Au within 20-30%. HQMD with
L = 4.33fm2 and BQMD initialisation yields about the
same values. HQMD differs mainly from QMDRKNC in
the lifetime of the deltas. The similar multiplicities of
IQMD and QMDRKNC are a result of counterbalancing
effects which will be briefly discussed:

The infinite lifetime of the delta in BQMD and QM-
DRKNC causes an enhancement of about 10 - 20% of
the kaon number when compared to HQMD. This is due
to the dominance of the channel nucleon+delta → nu-
cleon+hyperon+kaon for the subthreshold production. An
infinite lifetime enhances the possibilities for nucleon-delta
collisions. Similar numbers have been found when compar-
ing default IQMD with an calculation with infinite delta
lifetimes.

The BQMD initialisation yields an enhancement of the
kaon production by about 20 - 30 % as compared to the
IQMD initialisation. The reason is presumingly similar to
that for the pion production. The BQMD initialisation
allows higher kinetic energies of the nucleons in the com-
pressed state.

The choice of a short Gaussian width (L = 4.33 fm2,
BQMD default) causes a reduction of the kaon number
of about 30 % as compared to a calculation with L =
8.66 fm2 which is the IQMD default for Au. The reason for
this may be connected to the argument used for explaining
the enhancement of flow when using a short width. The
density gradient gets steeper when the interaction range
decreases. This simulates a stronger repulsion of the com-
pressed nuclear matter.

5 Initialisation and Stability

One of the seminal problems of the simulation of a heavy
ion reaction is the proper description of ground state nu-
clei. One cannot expect that a reaction is reproduced prop-
erly if projectile and target do not have the observed prop-
erties, in particular the proper ground state density.

As we have stressed several times before the choice
of the initial condition is crucial for a proper description
of various phenomena. Fermi-momenta treated semiclas-
sically as a random motion of nucleons inside a nucleus
induces significant fluctuations of the density profile, if
the motion of a single nucleus is followed for some time.

Figure 9 shows a time evolution of the root mean
square radii of single Au nuclei in coordinate and momen-
tum space. Concerning the coordinate space we observe
an expansion mode in IQMD and an oscillation mode in
BQMD. IQMD shows best stability if potentials corre-
sponding to a hard eos is used whereas BQMD shows best
stability if a soft eos is used. The rms radii obtained with
BQMD soft eos correspond to the results presented in [8].
The other eos yield larger fluctuations for both programs.

Fig. 9. Time evolution of the root mean square radii of a single
Au nucleus in coordinate and momentum space obtained with
IQMD and BQMD using a hard and a soft eos

This stresses once more the fact that a semiclassical ap-
proach can be optimized to a desired purpose but on the
cost of other applications.

The fluctuations of the rms radii in momentum space
demonstrate that the potentials are not saturated in the
given initialisation. The system converts potential energy
into kinetic energy and vice versa to equilibrate the sys-
tem. This conversion of energy was already addressed in
the previous subsection (particle production). The initial-
isations of IQMD and BQMD yield different pion numbers
due to different balances of kinetic and potential energy.

The counterbalancing parts are the kinetic pressure
which causes an expansion and the density dependence of
the potentials which may cause attraction for low densities
and repulsion for high densities.

For this it may be interesting to regard the mean den-
sity of the system which is the mean value of the density
of each particle averaged over all particles. It should be
noted that this value may be sensible to density fluctua-
tions in the center which do only slightly effect the root
mean square radius.

A time evolution of single nuclei the Au case (hard
eos) mean densities (density per particle averaged over
all particles) changing between about ρ = 0.14 and 0.15
fm−3 for IQMD and between ρ = 0.11 and 0.18 fm−3 for
BQMD. For smaller systems (on a time period of about 60
fm/c) the stability of IQMD gets smaller, to e.g. a range of
ρ = 0.14 to 0.17 fm−3 for a Nb nucleus in IQMD, ρ = 0.16
to 0.19 fm−3 for a Ca nucleus in IQMD and ρ = 0.16 to
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Fig. 10. Time evolution of the density profiles ρ(r) obtained
for a Au nucleus initialized with BQMD (with Yukawa) using
the width of L = 4.33 fm2

0.21 fm−3 for a Ne nucleus in IQMD, while in BQMD the
fluctuations remain constant (ρ = 0.1− 0.17 fm−3) for all
three regarded systems. It should also be noted that these
fluctuations increase in IQMD if a soft eos is used (about
ρ = 0.11 − 0.15 for the Au case) and decrease in BQMD
(to about the same values).

Let us now examine the density profile of a single Au
nucleus. Figure 10 displays the time evolution of the den-
sity profile within BQMD. We observe a change in the
center as well as at the surface. In a considerably large
volume around the center (r ≤ 5 fm) the change of density
with time induces changes of the compressional energy in
a heavy ion reaction. The weakening of the surface causes
an increase of the rms radius and it therefore modifies
the total interaction cross section as well as the probabil-
ity of e.g. particle production processes in particular in
peripheral collisions. Without Yukawa forces these fluctu-
ations are even larger. The reason for these fluctuations
are the lack of pressure built up by the Fermi momentum
when the nucleus gets compressed. This can be verified
by initializing HQMD with the full Fermi momentum but
otherwise as above.

The time evolution of the density profile in IQMD is
displayed in Fig. 11 for a gold nucleus with the default
width of L = 8.66 fm2. We find strong fluctuations at r = 0
but a stable shape at the surface and a rather stable rms
radius. We also find that the shape of the r2ρ(r) distribu-
tion shows better stability for the L = 8.66 fm2 case than
for L = 4.33 fm2. This also motivated the choice of L in
IQMD.

It has now to be tested whether these fluctuations of
the density profile cause uncertainties in the determina-
tion of observables. This is tested by changing the initial-
isation distance d (with respect to the minimum distance
for a head-on collision) which is defined as (R are the radii
of the nuclei):

d = z(center of proj.)− z(center of target)
−R(proj.)−R(targ.)

Fig. 11. Time evolution of the density profiles ρ(r) obtained
for a Au nucleus initialized with IQMD using the width of
L = 8.66 fm2

Fig. 12. Dependence of the flow obtained from the system
Au(1 AGeV)+Au at b=3fm on the initialisation distance using
IQMD with L = 8.66 fm2 and BQMD with L = 4.33 fm2

By changing this distance we allow the nuclei to change
their profile according to the internal forces before they
come into nuclear contact. For the ideal case this technical
parameter should have no influence on the observables.
In reality the observables depend on it, however, in most
cases weakly.

A strong influence of the density fluctuations on ob-
servables has been found particularly within BQMD for
the collective sideward flow. Depending on the initially
chosen distance the total directed transverse momentum
transfer in the reaction Au (1 GeV/nucleon, b = 3 fm) +
Au varies strongly as it can be seen in fig,12. Although
the absolute magnitude of the flow depends on whether
a Yukawa interaction is employed or not, this variance
is observed in both cases. IQMD, however, run with the
default parameters shows a much weaker dependence on
this technical parameter. In the calculation the flow varies
as a function on the initialisation distance only by about
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Table 4. Comparison of the different realizations BQMD, HQMD and IQMD concerning the different ingredients of the inputs

Input BQMD IQMD HQMD

Initialisation Wood-Saxon hard sphere both
Init. distance 3fm 0fm 3fm

Gaussian width 4.33 fm2 8.66 fm2 4.33 fm2

Coulomb forces Zp = Zn Zp = 1, Zn = 0 Zp = Zn
Yukawa forces L=1.5 fm L=0.4 fm none

Yukawa adjust. t1(i) = t1 −
∑

j
UY ukij /ρ t1 = t1 − κ ∗ V Y uk0 ∗ LY uk/L3/2 none

actio = reactio on the average ‘exact’ ‘exact’

asymmetrie forces none t6/ρ0 T
i
3T

j
3 δ(rrri − rrrj) none

forces on π no π Coulomb no force
cross sections Cugnon 1981 VUU 1986 Cugnon 1989

particles N,∆ N,∆, π N,∆,N∗, π

10%. An IQMD calculation with L = 4.33 fm2 shows less
stability. The flow values are decreasing with initialisation
distance. This corresponds to the effect that the density
of maximum stability (ρ = 0.15 fm−3 for L = 4.33 fm2)
is not equal to the initialisation density ρini = 0.17 fm−3.
This was originally the motivation for the use of a system
dependent width in IQMD. A BQMD calculation with
L = 8.66, however, still shows strong fluctuations. The
fluctuations in BQMD decrease if the Fermi momentum
of the initialized nuclei is increased. However, in this case
the binding energy of the nucleus becomes smaller and
spurious particle evaporation may be effected.

For the observables for Au(1GeV)+Au discussed in
this paper we find the following maximum deviation (in
a range of initialisation distances between 0 and dmax =
13 fm) from the default values: for the IQMD initialisa-
tion 10% concerning flow and kaon multiplicity and 8%
concerning pion multiplicity and for the BQMD initial-
isation 70% concerning flow, 45% concerning kaon and
35% concerning pion multiplicity. For the fragmentation
of Au(150Mev)+Au b=3fm both models yield (in their
default modes) about 8-15% deviation in the number of
IMFs ( a rise from 6.6 to about 7.1 for IQMD and a fall
from 12.7 to about 10.8 for BQMD).

It should be noted that the reported errors also include
about 5-10% statistical fluctuations and that for initiali-
sation distances larger than 13 fm the deviations may still
increase for some calculations. The value of 13 fm has been
chosen since it is the difference in the effective distance to
the first reaction point between a central and a very pe-
ripheral collisions.

In any case, these fluctuations cause an additional sys-
tematic error which has to be added to the statistical one
if one compares with data. Because these fluctuations are
stronger using a BQMD initialisation the systematical er-
ror is larger there.

In conclusion we find that both models show fluctua-
tions of the density profile at r = 0. However IQMD shows
in its default mode a rather stable r2ρ(r) shape while for
BQMD the maximum of r2ρ(r) changes in time. This yield
artificial vibration modes which influence the stability of
the nucleus and therefore cause systematic errors which in
most cases are stronger in BQMD than in IQMD. Espe-

cially the discussion of dynamical variables like flow and
particle production within BQMD has to be regarded very
cautiously.

V Summary and concluding remarks

We have compared different realizations of the Quantum
Molecular Dynamics model. The different realizations dif-
fer in certain input variables as they are comparatively
presented in Table 4. Some of these parameters are purely
technical, some are physical. The latter parameters are
constrained by experimental observations but are not com-
pletely fixed. If the same parameters are employed the
result of the different programs are identical in between
the error. This is a remarkable achievement in view of the
several thousand program lines of each of these programs.

The HQMD realization allows for the first time to com-
pare in detail the influence of different inputs on the dif-
ferent observables. The most important input is the choice
of the Gaussian width L or in other words the interaction
range of the nuclear potential. A change of the interaction
range causes differences in the density profile of a ground
state nucleus and in the strength of the density gradi-
ent. Thus a smaller interaction range yields an enhanced
flow, enhanced fragment production and (which was not
shown) a reduced numbers of pions (slight changes) and
kaons (larger changes). The interaction range determines
the surface properties of the nuclei as well as their binding
energy. Only in infinite nuclear matter the binding energy
is independent of this quantity. The experimental value of
these observables allow to fix the range of possible values.

The choice of the cross section employed in HQMD,
BQMD or IQMD yield slight changes in the flow (and also
slight differences in the stopping) but has no influences on
the fragmentation. Pion production in HQMD and IQMD
are comparable.

An important factor is the choice of the ground state
description. This choice effects the results in flow and par-
ticle production, but does not influence the fragmentation
pattern. The flow at high energies is found to be stronger
if the initialisation of the nucleus is more compact. At
low energies these differences vanish, instead the average
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Fermi momentum becomes important. The Fermi momen-
tum corresponding to (infinite) nuclear matter are neces-
sary to stabilize the nucleus against artificial vibrations
and yield better agreement with experimental flow data.
At the same time a large Fermi momentum lowers the
binding energy. The binding energy of heavy nuclei is re-
produced if local Fermi momenta are employed.

As a conclusion we find that there are variables which
are very robust against a change of the technical or phys-
ical parameters, e.g. the rapidity distribution. Others like
the fragmentation pattern depend on the range of the in-
teraction only. Other observables, like the directed flow
have a very strong dependence on many details of the cal-
culation and slight differences between the different QMD
flavours yield large differences in this observable.

In the BQMD proper binding energies have been achiev-
ed on the cost of large dynamical fluctuations in the ini-
tial state and by a moderate energy non-conservation (≈
2 MeV/nucleon for single nuclei) on an event by event
basis. The IQMD-model offers rather stable density dis-
tributions and good energy conservation, however for the
price of nucleon evaporation and and improper binding
energies (Ebind ≈ 4 − 5 MeV/nucleon for heavy nuclei
instead of 8 MeV/nucleon).

The choice between a parametrization which yields the
proper ground state energy of projectile and target and
that which yield the necessary Fermi momentum to ob-
tain the observed flow is not satisfying. Therefore work is
in progress to modify the bare interaction between the nu-
cleons inside the nucleus in a way which allows to obtain
both at the same time. In particular one has to account
for the peculiar dependencies between the various parts of
the model. Initialisation, propagation, hard collisions, and
Pauli-blocking cannot be treated independently from each
other. Forces and cross-sections are connected. The spe-
cific choice of the saturation density, and thus also that of
the central density of heavy nuclei influences the physical
output. These aspects are part of the effort to obtain a
new unified QMD scheme which covers the energy range
between 25 MeV/nucleon and 200 GeV/nucleon. The aim
of this new model will be to cover the best possibilities for
a reliable description of the different aspects of heavy ion
collisions [89].
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(DFG) and by the Gesellschaft für Schwerionenforschung
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13. H. Stöcker, A. A. Ogloblin and W. Greiner. Z. Phys. A303,

259 (1981)
14. S.A. Bludman, Phys. Reports 163 (1988) 47
15. H.A. Gustafsson et al., Phys. Rev. Lett. 52 (1984) 1592; D.

Beauvis et al., Phys. Rev. C27 (1983) 2443; H.G. Ritter et
al., Nucl. Phys. A447 (1985) 3c; K.G.R. Doss et al., Phys.
Rev. Lett. 57 (1986) 302; H.H. Gutbrod et al., Phys. Lett.
216B (1989) 267.;H.H. Gutbrod et al. Rep. Prog. Phys. 52
(1989) 1267

16. A. Sandoval et al., Phys. Rev. Lett. 45, 1236 (1980); R.
Stock et al., Phys. Rev. Lett. 49, 1236 (1982); J. Harris et
al., Phys. Lett. B153, 377 (1985)

17. H. Kruse, B. V. Jacak, and H. Stöcker. Phys. Rev. Lett.
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